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A parallel and scalable domain decomposition method for unstructured and hybrid
spectral element discretizations of elliptic problems is introduced and studied. The
spectral elements are affine images of the reference triangle or square in two dimen-
sions and of the reference tetrahedron, pyramid, prism, or cube in three dimensions.
The method is based on overlapping Schwarz techniques applied to the Schur com-
plement of the discrete system and is implemented as a preconditioner for a Krylov
space method. Numerical results in two and three dimensions show that the iteration
counts of our method are bounded by a constant independent of the spectral degree
and the number of subdomains. The resulting elliptic solver can be used in Navier–
Stokes simulations using the spectral element code NekTar.c© 2000 Academic Press
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1. INTRODUCTION

In this paper, we introduce and study a parallel and scalable domain decomposition
method for unstructured and hybrid spectral element discretizations of elliptic problems.
The spectral elements are affine images of the reference triangle or square in two dimensions
and of the reference tetrahedron, pyramid, prism, or cube in three dimensions. The method
is based on overlapping Schwarz techniques, consisting in dividing the domain of the given
elliptic problem into overlapping subdomains and solving smaller instances of the elliptic
problem on these subdomains. An additional coarse problem with few degrees of freedom
per subdomain is also solved in order to obtain scalability. The method is implemented
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as a preconditioner for a Krylov space method such as the conjugate gradient method for
symmetric problems and GMRES or QMR for nonsymmetric problems. This elliptic solver
can be used in Navier–Stokes simulations using the spectral element code NekTar described
in Section 4.

Structured spectral elements employing hexahedral elements, tensor product basis func-
tions, and Gauss–Lobatto–Legendre quadrature rules have been developed extensively both
theoretically and numerically; see, e.g., Bernardi and Maday [2] and the references therein.
Domain decomposition for hexahedral spectral andhpelements has been developed mainly
using nonoverlapping techniques, also known as iterative substructuring methods; see, e.g.,
Mandel [21, 20], Fischer and Rønquist [12], Rønquist [28], Pavarino and Widlund [27],
Pavarino [25], Guo and Cao [13], and Odenet al. [22]. A few works have proposed and
studied overlapping methods; see Pavarino [24], Casarin [4], Fischer [11], and Rønquist
[29]. Multi- p methods, analogous to multigrid methods forh-version finite elements, can
be found in Katz and Hu [19].

Unstructured spectral andhp elements have been studied by Szabo and Babuˇska [35],
and Babuˇska and Suri [1] and more recently by Karniadakis’ group; see Karniadakis and
Sherwin [17] and the references therein. The choice of basis functions and quadrature
rules is a more difficult issue for unstructured spectral elements and the theoretical anal-
ysis of these methods still presents some basic open questions. Different choices of in-
terpolation points on triangles and tetrahedra can be found in Chen and Babu˘ska [7, 8],
Hesthaven [16], Wingate and Taylor [40, 39], and Heinrichs [14]. We follow in this pa-
per the approach of [17] based on Dubiner’s basis function [10], described in the next
section.

Nonoverlapping domain decomposition methods for triangular and tetrahedral spectral
elements can be found in Bica’s Ph.D. Thesis [3], Sherwinet al. [30], and Casarin and
Sherwin [5]. As it is already well known for standardh-version finite elements, the lack of
overlap among subdomains requires the construction of complex coarse solvers in order to
ensure scalability. The method we propose in this paper, on the other hand, is based on over-
lapping Schwarz techniques which allow greater freedom in the choice of local and coarse
solvers. In order to reduce the computational cost of our preconditioner, we implicitly elim-
inate the interior degrees of freedom in each element (as in nonoverlapping methods) and
we apply the overlapping Schwarz technique to the resulting Schur complement involving
only the interface degrees of freedom. The same technique could, of course, be applied to
the whole discrete system involving both interior and interface degrees of freedom. Due
to the unstructured spectral elements used, we employ generous overlap consisting of a
layer at least one-element wide around each subdomain. Numerical results in two and three
dimensions show that the iteration counts of our method are bounded by a constant inde-
pendent of the spectral degree, the number of elements, and the number of subdomains. At
this moment, we are able to prove this result only in the case of a structured quadrilateral
or hexahedral mesh, using the theory developed in [24].

The paper is organized as follows. In Section 2, we briefly describe the unstructured
spectral element discretization used in this paper. In particular, we illustrate in separate
sections the coordinate system, the quadrature rules, the basis functions, the polynomial
spaces, and the continuous and discrete elliptic problems. In Section 3, we introduce our
overlapping Schwarz preconditioner in its additive form and we present in Section 4 the
results of several numerical experiments performed with the code NekTar showing the
scalability of the proposed method.
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2. UNSTRUCTURED SPECTRAL ELEMENTS

In this section, we briefly recall the basic facts about the spectral element discretization
considered, including the standard element mappings, quadrature rules, polynomial bases,
and spaces. A more complete treatment can be found in the book by Karniadakis and
Sherwin [17].

2.1. Coordinate Systems

For triangular and quadrilateral elements the reference element is a square(a, b)∈
[−1, 1]2. For tetrahedral, pyramidal, prismatic, and hexahedral elements the reference ele-
ment is a cube(a, b, c) ∈ [−1, 1]3. The reference element is mapped to a standard element
specific to each type of element, which is described by a set of coordinates(r, s) in two
dimensions and(r, s, t) in three dimensions. Subsequently each standard element is con-
tinuously mapped to its physical element.

For example, the triangle standard element is the set{(r, s) | −1< r, s; r + s< 0}. The
reference element is mapped to the standard triangle element by the mapping:

r = 1

2
(1+ a)(1− b)− 1,

s = b.

The standard triangle element is mapped to the physical triangle element by the mapping

x = − (r + s)

2
v1+ (1+ r )

2
v2+ (1+ s)

2
v3,

wherev0, v0, v0 are the vector coordinates of the vertices of the physical triangle.
The standard finite element mappings are used for the quadrilateral and hexahedral el-

ements. The mappings for the tetrahedron, pyramid, and prism can be found in Sherwin
[31] and Warburton [36]. Details of algorithms that align the coordinate systems of the
three-dimensional unstructured elements so that they conform can be found in Warburton
[36] and Sherwinet al. [30].

2.2. Quadrature

We take advantage of the tensor product element coordinate systems to perform inte-
gration. The integrations over each element can be performed as a set of one-dimensional
integrals using Gauss quadrature. If we used the reference coordinate systems this would
be very expensive since the limits of the “collapsed” elements are not constant.

We first describe the choice of quadrature type for integrating each direction. We will
then motivate the inclusion of quadrature with nonconstant weights in order to reduce the
number of points we use.

In two dimensions we consider integrals of the form:∫
Physical

f (x) dx dy=
∫

Reference
f (x(r))

∂(x)
∂(r)

dr ds,

=
∫

Tensor
f (x(r(a)))

∂(x)
∂(r)

∂(r)
∂(a)

da db.



UNSTRUCTURED SPECTRAL ELEMENTS 301

TABLE I

Element a b c

Triangle GLL GRJ1,0 —
Quadrilateral GLL GLL —
Tetrahedron GLL GRJ1,0 GRJ2,0
Pyramid GLL GLL GRJ2,0
Prism GLL GLL GRJ1,0
Hexahedron GLL GLL GLL

Note. GLLImplies Gauss–Lobatto–Legendre which is the Gauss
quadrature for a constant weight function with bothx=±1 points
endpoints included.GRJα,β implies Gauss–Radau–Jacobi quadrature
with (α, β) weights and the endpointx=−1 included.

In three dimensions:∫
Physical

f (x) dx dy dz=
∫

Reference
f (x(r))

∂(x)
∂(r)

dr ds dt,

=
∫

Tensor
f (x(r(a)))

∂(x)
∂(r)

∂(r)
∂(a)

da db dc.

We use the Gauss weights that will perform the discrete integral of a function as a sum:

∫ 1

−1
(1− z)α(1+ z)β f (z) dz=

N−1∑
i=0

f
(
zα,βi

)
w
α,β
i .

This will be used in each of thed directions in thed-dimensional elements. In Table I we
show the type of Gaussian quadrature we use in each of the a, b, and c directions.

2.3. Polynomial Bases

2.3.1. Modal basis. A modal basis for triangle elements has been presented by Dubiner
[10] and Sherwin and Karniadakis [32], and it was applied to fluid dynamics problems by
Sherwin and Karniadakis [33] and to geophysical fluid dynamics problems by Wingate and
Boyd [38]. We include it here as an example of the type of basis we use for the unstructured
elements. Further details of the bases we use for quadrilaterals, tetrahedra, prisms, pyramids,
and hexahedra can be found in Sherwin [31]. We remark that these bases are tensorial and
therefore the sum factorization technique (also known as tensor product factorization) can
be applied for the efficient evaluation of matrix–vector products; see [17, Section 4.1.5,
pp. 124–132]. There are also alternative nodal bases for the unstructured elements discussed
by Chen and Babu˘ska [7, 8], Hesthaven [16], and Warburtonet al. [37].

2.3.2. Triangle basis. We present here a basis which is a set of tensor products with
respect to the tensor product coordinates for the triangle and polynomials with respect to the
reference element coordinates. It maintains numerical linear independence up to high orders
due to the construction of the interior modes from Jacobi polynomialsPα,β

n with carefully
chosen(α, β) coefficients to ensure that mode shapes do not become too similar. Increasing
α shifts the roots of the Jacobi polynomials away from the coordinate singularity atb = 1
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as demonstrated in Sherwin and Karniadakis [32] and hence the modes are prevented from
having the same shape at this vertex.

The form of the basis is:
Vertex modes:

φvertex1 =
(

1− a

2

)(
1− b

2

)
,

φvertex2 =
(

1+ a

2

)(
1− b

2

)
,

φvertex3 =
(

1+ b

2

)
.

Edge modes(2≤ m; 1≤ n,m< N;m+ n < N):

φedge1
m =

(
1+ a

2

)(
1− a

2

)
P1,1

m−2(a)

(
1− b

2

)m

,

φedge2
n =

(
1+ a

2

)(
1− b

2

)(
1+ b

2

)
P1,1

n−1(b),

φedge3
n =

(
1− a

2

)(
1− b

2

)(
1+ b

2

)
P1,1

n−1(b).

Interior modes(2≤ m; 1≤ n,m< N;m+ n < N):

φ interior
mn =

(
1+ a

2

)(
1− a

2

)
P1,1

m−2(a)

(
1− b

2

)m(1+ b

2

)
P2m−1,1

n−1 (b).

We represent this basis graphically forN = 5 in Fig. 1; the highest mode is quartic.

FIG. 1. Mode shapes for the triangle modal basis withN= 5.
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2.4. Polynomial Support

The polynomial bases represented in Sherwin [31] for the hybrid elements have the
following support in terms of the polynomial orderN and the local coordinate systems
of the standard element coordinate systems(r, s) for the two-dimensional elements and
(r, s, t) for the three-dimensional elements (the bases here are only used to describe the
polynomial spaces; the actual bases used in the method have been described in the previous
section). For more general polynomial bases with different degrees in each direction, see
Karniadakis and Sherwin [17, Section 3.2].

Element Polynomial spacePN

Triangle Span{r i sj | 0≤ i + j ≤ N}
Quadrilateral Span{r i sj | 0≤ i, j ≤ N}
Tetrahedron Span{r i sj tk | 0≤ i + j + k ≤ N}
Pyramid Span{r i sj tk | 0≤ i + j + k ≤ N}
Prism Span{r i sj tk | 0≤ i + k ≤ N, 0≤ j ≤ N}
Hexahedron Span{r i sj tk | 0≤ i ≤ N, 0≤ j ≤ N, 0≤ k ≤ N}

2.5. Continuous and Discrete Elliptic Problems

We consider the following model elliptic problem on a bounded Lipschitz regionÄ ⊂ Rd

with boundary∂Ä = 0D ∪0N . Dirichlet boundary conditions are imposed on0D, a closed
subset of∂Ä with positive measure, and Neumann conditions on0N .

(−∇2+ λ)u = f (λ ≥ 0) in Ä,
u = u0 on0D,
∂u
∂n = g on0N .

More general linear, self adjoint, second order elliptic problems and boundary conditions
could be considered as well. The standard variational formulation of this problem is: Find
u ∈ V = H1

D(Ä) = {v ∈ H1(Ä) : v= 0 on 0D} such that

a(u, v) = F(v), ∀v ∈ V, (1)

where

a(u, v) =
∫
Ä

(∇u · ∇v + λuv) dx and F(v) =
∫
Ä

f v dx+
∫
0N

gv ds.

We assume that the domainÄ is a union of the spectral elements described previously,

Ä =
K⋃

k=1

Äk,

where eachÄk is the affine image of the reference triangle or square in two dimensions and
of the reference tetrahedron, hexahedron, pyramid, or prism in three dimensions. LetτK be
the finite element mesh defined by the spectral elementsÄk. The spectral element space is
defined as

V N,K ={v ∈ V : v
∣∣
Äk
∈ PN, k = 1, . . . , K

}
,
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FIG. 2. Illustration of local and global numbering for a domain containing one quadrilateral and one triangular
element. Here the expansion order isN = 3, and we only show the boundary modes.

wherePN is the proper polynomial space on each element; see Section 2.4. The standard
Galerkin formulation of (1) is: Findu ∈ V N,K such that

aN,K (u, v) = FN,K (v) ∀v ∈V N,K , (2)

whereaN,K (·, ·) and FN,K (·) are obtained froma(·, ·) and F(·) by using the numerical
quadrature rules described in Subsection 2.2. The stiffness matrix and load vector of this
discrete system are assembled from their elemental contributions on eachÄk by means of
the Z operator, described in detail in Henderson [15], that assembles the local coefficients
into the global coefficients and ensuresC0 continuity.

In order to illustrate this global assembly procedure, we consider a global domain made up
of two elements as shown in Fig. 2. Only the boundary modes of each element are involved,
as the interior modes are completely decoupled. The expansion order shown here isN = 3
which means there are six boundary modes on the triangle and eight boundary modes on
the quadrilateral. The total number of local boundary modes is thereforeNlocal= 14. Since
three modes meet along the connecting edge the number of global boundary modes is eleven
and so for this caseZ is a 14× 11 matrix as shown in Fig. 3.

The superscripts denote the local or global nodal number and the subscripts denote the
element number. The absolute column sum gives the multiplicity of a mode and we see
that columns 5, 6, and 7 all have a multiplicity of 2. We also note that the absolute row
sum is always 1 since there is only one value of each local mode. The Z matrix groups
together the degrees of freedom for the boundary mode shapes for all the elements. The
remaining interior degrees of freedom are collected in one group per element. A typical
matrix structure of the resulting discrete system (2) is shown in Fig. 4, whereA= Zt ÃZ
and Ãi, j =aN,K (φi , φ j ), with φi andφ j boundary modes.

We note that the global stiffness matrix is never formed; only the elemental stiffness
matrices are formed and factored. The action of the global stiffness matrix on a vector is
computed by subassembly using the elemental stiffness matrices.

We can take advantage of the bandedness of theA boundary–boundary matrix and the
decoupledC matrix by using the well-known substructuring (or static condensation) tech-
nique; see Chap. 4 in Smithet al. [34]. By implicitly eliminating the interior degrees of
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FIG. 3. Z-matrix map from global to local degrees of freedom.

freedom, the system can be rewritten as[
A− BC−1BT 0

BT C

][
ub

uI

]
=
[

f b − BC−1f I

f I

]
,

where bold letters denote vectors of coefficients,ub contains the unknown global boundary
coefficients, anduI contains the unknown interior coefficients.

Once the boundary coefficientsub are known, the interior coefficientsuI are easily found
by solvingK decoupled interior problems. The matrixS= A− BC−1BT is known as the
Schur complement of the original linear system. We determineub by solving iteratively the
Schur complement system

Sub = f̃ b = f b − BC−1f I (3)

FIG. 4. Form of the global operator matrix. Notice the sparsity of A and the block nature of B and C.
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by a preconditioned conjugate gradient method (PCG). The preconditioner is based on
overlapping Schwarz techniques, described in the next section. We remark that the iterative
solution of the Schur complement system by PCG does not require one to explicitly form
S, but requires only the action ofSon a given vector. This is computed using the definition
of S by solvingK uncoupled Dirichlet problems corresponding to the diagonal blocks of
C. Each block can be factored before the iteration so that each Dirichlet solve during the
iteration can be accomplished by a simple back-substitution.

It is easy to see that the linear system (3) is the matrix representation of the following
Galerkin problem (see Chapter 4.6 in Smithet al. [34]): Findub ∈ Ṽ N,K such that

aN,K (ub, v) = FN,K (v) ∀v ∈ Ṽ N,K , (4)

whereṼ N,K is the subspace of the discrete harmonic functions ofV N,K . We recall that a
functionv ∈V N,K is discrete harmonic if

aN,K (v, φI ) = 0

for every interior modeφI ∈V N,K , i.e., for every mode that vanishes on the interface
0= ⋃K

k=1 ∂Äk. In matrix terms,v= (vb, vI ) is discrete harmonic if

BTvb + CvI = 0.

3. OVERLAPPING SCHWARZ PRECONDITIONERS

For simplicity, we present here the basic additive variant of the preconditioner. More
general multiplicative or hybrid variants can be considered as well; see Smithet al. [34].

We recall thatτK is the finite element triangulation defined byÄ= ⋃K
k=1Äk. We partition

τK into Ks disjoint groupsDi of adjacent elements, called subdomains:Ä= ⋃Ks
i=1 Di . In

order to have an overlapping partition ofÄ, each subdomainDi is extended to a larger
subdomainD′i , consisting of all elements ofτK within a distanceδ from Di . The minimal
overlap consists of one layer of elements outsideDi .

3.1. Matrix Form of the Preconditioner

Our overlapping additive Schwarz preconditionerŜ−1 for the Schur complement matrix
S is based on the solution of a coarse problem and on the solutions of local problems on
the subdomainsD′i , defined as follows.

(a) LetR0 be the restriction matrix returning only the vertex modes of a global vector
φb of boundary coefficients and letS0 be the vertex block of the Schur complementS. Then
RT

0 S−1
0 R0 represents the solution of a coarse problem with discrete harmonic piecewise

linear elements on the meshτK (i.e., involving only the discrete harmonic extensions of
vertex modes).

(b) Let Ri be restriction matrices associated with the subdomainsD′i ; given a global
vectorφb, Ri returns only the local boundary coefficientsφi

b of basis functions with support
in D′i . Let Si be the local Schur complement associated with the subdomainD′i . Then
RT

i S−1
i Ri represents the solution of thei th local problem onD′i involving only the local

boundary coefficientsφi
b and satisfying zero Dirichlet boundary conditions on∂D′i \∂Ä.
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The matrix form of our preconditioner is then:

Ŝ−1 = RT
0 S−1

0 R0+
Ks∑

i=1

RT
i S−1

i Ri . (5)

We remark that, in practice, the action ofS−1
i can be calculated without explicitly forming

Si by solving a problem onD′i (with zero Dirichlet boundary conditions on∂D′i \∂Ä and
right-hand side different from zero only for the local boundary modes associated withφi

b);
see [34, Chap. 4.2.1] for this well-known technique. The same technique can be applied to
compute the action ofS−1

0 without explicitly formingS0. We also remark that actions of
both S−1

i andS−1
0 can be approximated by the solution of local and coarse problems with

approximate Schur complements; see [34, Chap. 4].

3.2. Space Decomposition and Convergence Rate Estimates

Schwarz preconditioners can also be described in functional terms by introducing a
decomposition of the discrete space of the problem. This is usually done in order to obtain
a theoretical analysis of the preconditioner by using the abstract Schwarz framework (see
[34]). This preconditioner is associated with the following decomposition of the discrete
spaceṼ N,K , defined in the previous section, into a coarse spaceV0 and local spacesVi ,
associated with the subdomainsD′i :

Ṽ N,K = V0+
Ks∑

i=1

Vi .

(a) The coarse space is defined as

V0 = Ṽ1,K ;

i.e., it consists of discrete harmonic piecewise linear functions on the meshτK . Computa-
tionally cheaper choices are possible, such as piecewise linear function on a coarser mesh
associated with the subdomainsDi . The associated coarse stiffness matrix is denoted by
S0.

(b) The local spacesVi consist of piecewisehp polynomials satisfying zero Dirichlet
boundary conditions on the internal subdomain boundaries∂D′i \∂Ä and the original bound-
ary conditions on∂D′i ∩ ∂Ä. Hence, for an internal subdomainD′i the associated local
space is

Vi = Ṽ N,K ∩ H1
0 (D

′
i ).

If we define a coarse projectionT0 : Ṽ N,K→V0 andKs local projectionsTi : Ṽ N,K→Vi

by

aN,K (Ti u, v) = aN,K (u, v) ∀v ∈Vi , i = 0, 1, . . . , Ks,

then it is easy to see that our preconditioned system

Ŝ−1S= RT
0 S−1

0 R0S+
Ks∑

i=1

RT
i S−1

i Ri S
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is exactly the matrix form of the additive Schwarz operator

T = T0+ T1+ · · · + TKs.

Pavarino [24] analyzed an overlapping preconditioner forp-version finite elements on
quadrilateral and hexahedral meshes. The method studied in [24] has generous overlap since
the subdomains consist of the union of the elements sharing each vertex. If the technical
tools developed in [24] (in particular Section 5, pp. 510–512) are used, it is straightforward
to extend to our preconditioner the same uniform bound on the condition number of the
iteration operator in case of quadrilateral meshes in two dimensions and hexahedral meshes
in three dimensions:

THEOREM1. If τK is a quadrilateral or a hexahedral mesh, then

cond(T) = cond(Ŝ−1S) ≤ C,

with C constant independent of N, K , and Ks.

The extension of the analysis to triangular or nonhexahedral meshes is still an open
problem. The numerical results reported in the next section indicate that a uniform bound
as in Theorem 1 holds for hybrid meshes as well. Some progress for nonoverlapping domain
decomposition methods and tetrahedral meshes can be found in Bica [3].

An additional open problem is the extension of our method based on generous overlap to a
more flexible method based on small overlap techniques. This has been done for hexahedral
meshes and GLL nodal basis, where a small overlap of a few GLL points outside each
spectral element led to a successful algorithm; see, e.g., Pahl [23], Casarin [4], Fischer [11],
Pavarino [26], and Rønquist [29].

3.3. Complexity Estimates

We present here some simple complexity estimates of the computational costs of the
PCG algorithm with our overlapping Schwarz preconditioner. For simplicity, we only con-
sider the serial case. More complete estimates should consider distributed memory parallel
architectures and estimate not just operation counts but also memory and interprocessor
communication costs. For a study of the parallel complexity of overlapping Schwarz meth-
ods forh-version finite elements and optimal choices of the coarse problem, we refer to
Chan and Shao [6].

The cost of solving the Schur complement systemSub= f̃ b by CG or PCG is given by

#it × Cit,

where #it is the number of iterations required andCit is the cost per iteration (floating point
operation count).

(a) CostCCG of CG.
(a1) #it is proportional to

√
cond(S) but we do not have a theoretical estimate of

cond(S) for our unstructured spectral elements. Forh-version finite elements,cond(S)=
O(h−1), an improvement over the conditioning of the full Laplacian operatorL, cond(L)=
O(h−2). Spectral elements are more ill-conditioned thanh-version finite elements: for
example, for GLL spectral elements on hexahedral meshes we havecond(L)=O(KN3)
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(see Couzy and Deville [9]). Numerical results by Sherwinet al. [30] indicate that for our
unstructured spectral elementscond(S)=O(K N) in two dimensions; hence

#it = O
(
K 1/2N1/2

)
.

(a2) The cost per iterationCit is dominated by the cost of matrix–vector products
Sv. These products can be computed either by subassembly of the local Schur complements
Si for each elementÄi (when theSi are formed in a preprocessing stage before the CG
iteration) or by the definition, i.e., byK interior solves, one for each elementÄi as explained
in Section 2.5. The costCi of the i th interior solve depends on the solver employed. Let
ni be the dimension of thei th interior problem onÄi ; we haveni =O(N2) in 2D and
ni =O(N3) in 3D. If we factor the local interior stiffness matrices before the iteration then
each local solve has the cost of a back substitution:Ci =O(n2

i ). I.e.,Ci =O(N4) in 2D and
Ci =O(N6) in 3D. If we use a fast interior solver such as the fast diagonalization methods
(FDM), available for hexahedral elements, then the cost reduces toO(N4) in 3D; see Couzy
and Deville [9]. We can also use a spectral version of the multigrid method, the multi-p
method (see Katz and Hu [19]), or a few steps of an iterative method to further reduce the
cost to the optimal valueO(N3) in 3D. Of course, in this last case the use of inexact interior
solvers might increase the number of CG iterations required.

In conclusion, we haveCi =O(N3α), with α≥ 1 depending on the interior solver em-
ployed, and in 2D

CCG = O

(
K 1/2N1/2

K∑
i=1

Ci

)
= O

(
K 3/2N3α+1/2

)
.

(b) CostCPCG of PCG with overlapping Schwarz preconditioner.
(b1) In this case, from Theorem 1 for hexahedral elements and from the numerical

experiments presented in the next section for general unstructured elements,

#it =
√

cond(Ŝ−1S) = O(1).

(b2)Cit is now dominated by the cost of matrix–vector productsSv and the cost of
the overlapping preconditioner̂S−1v (the restriction and interpolation operations with the
matricesRi andRT

i have lower order complexity as the other vector operations in each CG
iteration). The cost of̂S−1v is the sum of the cost of the local solvers on each subdomain
D′i and the cost of the coarse solver. As described in Subsection 3.1, each subdomain solve
requires the solution of a Dirichlet problem onD′i , which hasO(Ki N3) unknowns, where
Ki is the number of spectral elements in subdomainD′i . If we use the same solver we
used for the interior problems, the cost of each subdomain solve is thenO(K α

i N3α) and
the sum of the subdomain solves has costO(

∑Ks
i=1 K α

i N3α)=O(N3α∑Ks
i=1 K α

i ). The cost
of the coarse solver is proportional to the dimensionn0 of the coarse space: if we use a
direct solver the cost isO(n3

0) and if we use an iterative (inexact) solver the cost could be
reduced toO(n0). For simplicity, we tookn0= K in our implementation that uses all vertex
modes, but a more sophisticated implementation requiring only one degree of freedom per
subdomain would yieldn0= Ks. The cost of the coarse solve is thenO(nβ0), whereβ ≥ 1
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depends on the coarse solver employed. In conclusion, we have

Cit = cost(Sv)+ cost(Ŝ−1v) = O

(
K N3α + N3α

Ks∑
i=1

K α
i + nβ0

)

= O

(
N3α

(
K +

Ks∑
i=1

K α
i

)
+ nβ0

)
,

and since #it =O(1), we have

CPCG= O

(
N3α

(
K +

Ks∑
i=1

K α
i

)
+ nβ0

)
.

If the coarse problem is not too large,CPCG is asymptotically better thanCCG with respect
to N, while it is more difficult to estimate the exponent ofK . Supposing subdomains of
approximately the same size, we haveKi = K/Ks+ Kδ, whereKδ is the number of elements
in the overlapping layer of each subdomain. If we use an optimal solver withα= 1, then∑Ks

i=1 K α
i =

∑Ks
i=1(K/Ks+ Kδ)= K + KsKδ ≤ const.K , because each element belongs to

a fixed maximal number of subdomains. Then, in this case PCG has a better complexity
estimate than CG also with respect toK . We could also use as local solver a fixed number
of iterations of a linear iterative method (this will have an optimal cost withα = 1, but of
course it will be no longer guaranteed that #it =O(1)). We remark that using an inner CG
iteration as local subdomain solver would lead to worse complexity estimates because the
cost of the local solver would then beO(K 3/2

i N3α+1/2), as estimated in point (a).

4. NUMERICAL EXPERIMENTS

In this section, we report on the results of numerical experiments with the overlapping
Schwarz preconditioner̂S−1 described in Section 3. The elliptic problem considered is
the one described in Section 2.5 withλ= 1, domainÄ specified below and right-hand
side, and boundary condition prescribed such that the exact solution is sin(πx) sin(πy).
The spectral element discretization of this problem has been described in Section 2. The
results have been obtained using the unstructured spectral element code NekTar [32, 33,
31, 37, 17, 30] (see also http://www.cfm.brown.edu/people/tcew/nektar.html) running on
Silicon Graphics workstations. The NekTar code is constructed using an object-oriented
programming model implemented in C++ with matrix operations computed using fortran
LAPACK/BLAS routines.

The domain has been partitioned into subdomains using the mesh partitioning code
PMETIS [18]. The preconditioner is accelerated by the conjugate gradient method, since
the Schur complement is symmetric and positive definite. For these computations the initial
guess is always the null vector and the iteration is stopped when the norm of the relative
residual is less than 10−10 (or 10−15 in the last test in Table VI). The overlap is kept fixed
to the minimal one-element layer around each subdomain. In all figures, the subdomains
are shown without overlap. The coarse and local problems are solved exactly by a direct
method, except in the 3D runs of Tables V and VI, where for memory reasons we have used
a diagonally preconditioned conjugate gradient method. Computationally cheaper inexact
solvers, such as ILU(k), multi-p, or other iterative methods, could be used instead.
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TABLE II

2D Block Mesh, 128 = 82 · 2 Elements, 4 Subdomains

N Iter. Rel. err. Cond. n. λmax λmin

2 18 1.02e-10 5.11 5.00 0.9791
3 19 2.92e-11 5.11 5.00 0.9791
4 19 3.97e-11 5.11 5.00 0.9791
5 19 9.59e-11 5.11 5.00 0.9792
6 19 9.28e-11 5.11 5.00 0.9792
7 19 3.15e-11 5.11 5.00 0.9791
8 19 3.20e-11 5.11 5.00 0.9791
9 19 3.08e-11 5.11 5.00 0.9791

10 19 2.96e-11 5.11 5.00 0.9791
11 19 2.93e-11 5.11 5.00 0.9791
12 19 3.37e-11 5.11 5.00 0.9791

We consider the following four test problems.
(1) Ä= [−1, 1]2 is a square domain in the plane;

(a) τK is a structured mesh withK = 128= 82 · 2 triangular elements,Ks= 4 sub-
domains, andN varies from 2 to 12; see Table II.

(b) τK is a structured mesh withK = 512= 162 · 2 triangular elements,Ks= 16
subdomains, andN varies from 2 to 12; see Table III.

(2) Ä is a rectangular domain in the plane,τK is an unstructured mesh withK = 780
triangular and quadrilateral elements,Ks= 4, 8, 16 subdomains, andN varies from 2 to 12;
see Figs. 5–7 and Table IV.

(3) Ä= [−1, 1]× [−1, 1]× [0, 2] is a cubic domain,τK is a structured mesh with
K = 3072= 83 · 6 tetrahedral elements,Ks= 8 subdomains, andN varies from 2 to 8; see
Fig. 9 and Table V.

(4) Ä is the three-dimensional domain shown in Fig. 10, representing a one-element
thick face mask,τK is a mesh withK = 3295 prismatic elements,Ks= 8 subdomains, and
N varies from 2 to 6; see Table VI.

TABLE III

2D Block Mesh, 512 = 162 · 2 Elements, 16 Subdomains

N Iter. Rel. err. Cond. n. λmax λmin

2 24 1.31e-11 5.11 5.00 0.9786
3 24 1.46e-11 5.11 5.00 0.9790
4 24 1.42e-11 5.11 5.00 0.9791
5 24 1.40e-11 5.11 5.00 0.9791
6 24 1.41e-11 5.11 5.00 0.9791
7 24 1.43e-11 5.11 5.00 0.9791
8 24 1.43e-11 5.11 5.00 0.9791
9 24 1.43e-11 5.11 5.00 0.9791

10 24 1.42e-11 5.11 5.00 0.9791
11 24 1.39e-11 5.11 5.00 0.9791
12 24 1.37e-11 5.11 5.00 0.9791
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TABLE IV

qt2 Mesh, 780 Elements

Ks N Iter. Rel. err. Cond. n. λmax λmin

4 2 16 1.05e-9 3.02 3.00 0.9930
3 16 2.20e-9 3.00 3.00 0.9993
4 16 2.04e-9 3.01 3.00 0.9968
5 16 2.09e-9 3.01 3.00 0.9969
6 16 2.13e-9 3.01 3.00 0.9969
7 16 2.15e-9 3.01 3.00 0.9969
8 16 2.16e-9 3.01 3.00 0.9969
9 16 2.17e-9 3.01 3.00 0.9969

10 16 2.18e-9 3.01 3.00 0.9969
11 16 2.18e-9 3.01 3.00 0.9969
12 16 2.18e-9 3.01 3.00 0.9969

8 2 21 2.87e-9 4.49 4.46 0.9924
3 22 1.01e-9 4.51 4.47 0.9924
4 22 1.02e-9 4.51 4.47 0.9922
5 22 1.05e-9 4.51 4.47 0.9932
6 22 1.06e-9 4.50 4.47 0.9937
7 22 1.07e-9 4.50 4.47 0.9940
8 22 1.07e-9 4.50 4.47 0.9942
9 22 1.07e-9 4.50 4.47 0.9943

10 22 1.08e-9 4.50 4.47 0.9944
11 22 1.08e-9 4.50 4.47 0.9945
12 22 1.08e-9 4.50 4.47 0.9945

16 2 23 2.37e-9 5.05 5.00 0.9901
3 23 2.56e-9 5.04 5.00 0.9924
4 23 2.52e-9 5.04 5.00 0.9918
5 23 2.47e-9 5.04 5.00 0.9918
6 24 9.83e-10 4.98 4.93 0.9902
7 24 1.03e-9 4.92 4.87 0.9902
8 23 1.79e-9 4.59 4.55 0.9914
9 23 1.78e-9 4.59 4.55 0.9914

10 23 1.78e-9 4.59 4.55 0.9914
11 23 1.78e-9 4.59 4.55 0.9914
12 23 1.77e-9 4.59 4.55 0.9914

TABLE V

3D Block Mesh, 3072 = 83 · 6 Elements, 8 Subdomains

N Iter. Rel. err. Cond. n. λmax λmin

2 29 1.38e-11 5.74 5.38 0.9380
3 29 1.15e-11 5.75 5.41 0.9418
4 29 1.62e-11 5.75 5.42 0.9430
5 29 1.63e-11 5.75 5.42 0.9430
6 29 1.20e-11 5.75 5.42 0.9430
7 29 1.67e-11 5.75 5.42 0.9428
8 29 1.36e-11 5.76 5.42 0.9415
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TABLE VI

Head Mesh, 3295 Elements, 8 Subdomains

N Iter. Rel. err. Cond. n. λmax λmin

2 17 4.47e-15 3.08 3.00 0.9756
3 18 3.78e-15 3.08 3.00 0.9756
4 19 3.28e-15 3.08 3.00 0.9750
5 20 1.81e-15 3.08 3.00 0.9753
6 20 3.30e-15 3.08 3.00 0.9756

FIG. 5. qt2 mesh, 4 subdomains.

FIG. 6. qt2 mesh, 8 subdomains.

FIG. 7. qt2 mesh, 16 subdomains.



FIG. 8. PCG convergence history from Table IV, mesh qt2,N= 10, for diagonal preconditioner and for
overlapping additive Schwarz preconditioner on 4, 8, and 16 subdomains.

FIG. 9. 3D block mesh, 8 subdomains.



UNSTRUCTURED SPECTRAL ELEMENTS 315

FIG. 10. Head mesh, 8 subdomains.

In all tables, we report the number of conjugate gradient iterations, the relative error with
the direct solution, the Lanczos approximation of the condition number, and the extreme
eigenvalues of the preconditioned operatorŜ−1S.

It is clear from the results of the tables that the iteration counts and spectral properties of
the proposed method are independent of the spectral degreeN. The results with the hybrid
mesh reported in Table IV also show that the iteration counts are bounded independent of
the number of subdomainsKs (this is less evident in Tables II, III). This bound seems to be
the same for both hybrid (Table IV) and block meshes (Tables II, III). In Fig. 8, we have
plotted the PCG convergence history for the runs withN= 10 andKs= 4, 8, and 16 in
Table IV. These three runs with the overlapping Schwarz preconditioner are contrasted with
the diagonal preconditioner. For the three-dimensional tests, we could only run cases with
smaller values ofN, but the results point to the same conclusions: as is the case for standard
h-version finite elements, the overlapping Schwarz method proposed is clearly a parallel
and scalable solver also for unstructured spectral element discretizations. An efficient and
competitive implementation on parallel architectures was beyond the scope of this paper
and will require a study of efficient approximate solvers for the local and coarse problems.
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