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A parallel and scalable domain decomposition method for unstructured and hybrid
spectral element discretizations of elliptic problems is introduced and studied. The
spectral elements are affine images of the reference triangle or square in two dimen-
sions and of the reference tetrahedron, pyramid, prism, or cube in three dimensions.
The method is based on overlapping Schwarz techniques applied to the Schur com-
plement of the discrete system and is implemented as a preconditioner for a Krylov
space method. Numerical results in two and three dimensions show that the iteration
counts of our method are bounded by a constant independent of the spectral degree
and the number of subdomains. The resulting elliptic solver can be used in Navier—
Stokes simulations using the spectral element code NekT@pooo Academic Press
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1. INTRODUCTION

In this paper, we introduce and study a parallel and scalable domain decomposi
method for unstructured and hybrid spectral element discretizations of elliptic proble
The spectral elements are affine images of the reference triangle or square in two dimen
and of the reference tetrahedron, pyramid, prism, or cube in three dimensions. The me
is based on overlapping Schwarz techniques, consisting in dividing the domain of the g
elliptic problem into overlapping subdomains and solving smaller instances of the ellif
problem on these subdomains. An additional coarse problem with few degrees of free
per subdomain is also solved in order to obtain scalability. The method is implemer
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as a preconditioner for a Krylov space method such as the conjugate gradient metho
symmetric problems and GMRES or QMR for nonsymmetric problems. This elliptic sol\
can be used in Navier—Stokes simulations using the spectral element code NekTar desc
in Section 4.

Structured spectral elements employing hexahedral elements, tensor product basis
tions, and Gauss—Lobatto—Legendre quadrature rules have been developed extensivel
theoretically and numerically; see, e.g., Bernardi and Maday [2] and the references the
Domain decomposition for hexahedral spectrallbpdlements has been developed mainl
using nonoverlapping techniques, also known as iterative substructuring methods; see
Mandel [21, 20], Fischer and Rgnquist [12], Rgnquist [28], Pavarino and Widlund [2
Pavarino [25], Guo and Cao [13], and Odetnal. [22]. A few works have proposed and
studied overlapping methods; see Pavarino [24], Casarin [4], Fischer [11], and R@nc
[29]. Multi- p methods, analogous to multigrid methods fieversion finite elements, can
be found in Katz and Hu [19].

Unstructured spectral arfth elements have been studied by Szabo and 8eb(B85],
and Babgka and Suri [1] and more recently by Karniadakis’ group; see Karniadakis ¢
Sherwin [17] and the references therein. The choice of basis functions and quadr:
rules is a more difficult issue for unstructured spectral elements and the theoretical
ysis of these methods still presents some basic open questions. Different choices ¢
terpolation points on triangles and tetrahedra can be found in Chen andkgaji 8],
Hesthaven [16], Wingate and Taylor [40, 39], and Heinrichs [14]. We follow in this p
per the approach of [17] based on Dubiner’s basis function [10], described in the r
section.

Nonoverlapping domain decomposition methods for triangular and tetrahedral spe
elements can be found in Bica’s Ph.D. Thesis [3], Sheretial. [30], and Casarin and
Sherwin [5]. As it is already well known for standdneversion finite elements, the lack of
overlap among subdomains requires the construction of complex coarse solvers in orc
ensure scalability. The method we propose in this paper, on the other hand, is based on
lapping Schwarz techniques which allow greater freedom in the choice of local and co
solvers. In order to reduce the computational cost of our preconditioner, we implicitly eli
inate the interior degrees of freedom in each element (as in nonoverlapping methods)
we apply the overlapping Schwarz technique to the resulting Schur complement invol
only the interface degrees of freedom. The same technique could, of course, be appli
the whole discrete system involving both interior and interface degrees of freedom. |
to the unstructured spectral elements used, we employ generous overlap consisting
layer at least one-element wide around each subdomain. Numerical results in two and
dimensions show that the iteration counts of our method are bounded by a constant |
pendent of the spectral degree, the number of elements, and the number of subdomai
this moment, we are able to prove this result only in the case of a structured quadrila
or hexahedral mesh, using the theory developed in [24].

The paper is organized as follows. In Section 2, we briefly describe the unstructt
spectral element discretization used in this paper. In particular, we illustrate in sepe
sections the coordinate system, the quadrature rules, the basis functions, the polyn
spaces, and the continuous and discrete elliptic problems. In Section 3, we introduce
overlapping Schwarz preconditioner in its additive form and we present in Section 4
results of several numerical experiments performed with the code NekTar showing
scalability of the proposed method.
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2. UNSTRUCTURED SPECTRAL ELEMENTS

In this section, we briefly recall the basic facts about the spectral element discretiza
considered, including the standard element mappings, quadrature rules, polynomial b
and spaces. A more complete treatment can be found in the book by Karniadakis
Sherwin [17].

2.1. Coordinate Systems

For triangular and quadrilateral elements the reference element is a squbje
[—1, 1]°. For tetrahedral, pyramidal, prismatic, and hexahedral elements the reference
ment is a cubéga, b, ¢) € [—1, 1]°. The reference element is mapped to a standard eleme
specific to each type of element, which is described by a set of coordifragsn two
dimensions andr, s, t) in three dimensions. Subsequently each standard element is ¢
tinuously mapped to its physical element.

For example, the triangle standard element is thé(ses) | —1 <r,s;r +s < 0}. The
reference element is mapped to the standard triangle element by the mapping:

r= %(1+a)(1—b)—1,

s=bh.
The standard triangle element is mapped to the physical triangle element by the map

o r+s) , A+r) , (1459 5
= 5 VT + > Ve + > v,

wherev?, V0, 0 are the vector coordinates of the vertices of the physical triangle.

The standard finite element mappings are used for the quadrilateral and hexahedr
ements. The mappings for the tetrahedron, pyramid, and prism can be found in She
[31] and Warburton [36]. Details of algorithms that align the coordinate systems of 1
three-dimensional unstructured elements so that they conform can be found in Warbt
[36] and Sherwiret al.[30].

2.2. Quadrature

We take advantage of the tensor product element coordinate systems to perform
gration. The integrations over each element can be performed as a set of one-dimens
integrals using Gauss quadrature. If we used the reference coordinate systems this v
be very expensive since the limits of the “collapsed” elements are not constant.

We first describe the choice of quadrature type for integrating each direction. We \
then motivate the inclusion of quadrature with nonconstant weights in order to reduce
number of points we use.

In two dimensions we consider integrals of the form:

3(X)
f(x)dxdy= f(x(r))—drd
Ahysical ( ) y Reference ( ( ))8(” S

B 3 ()
= /Tenso,f @) @ 1290



UNSTRUCTURED SPECTRAL ELEMENTS 301

TABLE |

Element a b c
Triangle GLL GRJ, —
Quadrilateral GLL GLL —
Tetrahedron GLL GRJ, GRJl,
Pyramid GLL GLL GRJ,
Prism GLL GLL GRJ,
Hexahedron GLL GLL GLL

Note. GLLImplies Gauss—Lobatto—-Legendre which is the Gauss
quadrature for a constant weight function with batk- +1 points
endpoints includedSRJ, s implies Gauss—Radau-Jacobi quadrature
with (o, B) weights and the endpoint= —1 included.

In three dimensions:

/ f(x)dxdydz:/ f(x(r))@ dr dsdt
Physical Reference a(r)

3 3(x) d(r)
= /Tensor“““a”%@ dadbde

We use the Gauss weights that will perform the discrete integral of a function as a sun

1 N-1
- i=0

This will be used in each of thé directions in thed-dimensional elements. In Table | we
show the type of Gaussian quadrature we use in each of the a, b, and c directions.

2.3. Polynomial Bases

2.3.1. Modal basis. A modal basis for triangle elements has been presented by Dubi
[10] and Sherwin and Karniadakis [32], and it was applied to fluid dynamics problems
Sherwin and Karniadakis [33] and to geophysical fluid dynamics problems by Wingate |
Boyd [38]. We include it here as an example of the type of basis we use for the unstruct
elements. Further details of the bases we use for quadrilaterals, tetrahedra, prisms, pyre
and hexahedra can be found in Sherwin [31]. We remark that these bases are tensori
therefore the sum factorization technique (also known as tensor product factorization)
be applied for the efficient evaluation of matrix—vector products; see [17, Section 4..
pp. 124-132]. There are also alternative nodal bases for the unstructured elements disc
by Chen and BalsKa [7, 8], Hesthaven [16], and Warburtenal.[37].

2.3.2. Triangle basis. We present here a basis which is a set of tensor products w
respect to the tensor product coordinates for the triangle and polynomials with respect t
reference element coordinates. It maintains numerical linear independence up to high o
due to the construction of the interior modes from Jacobi polynonf@fs with carefully
chosen, B) coefficients to ensure that mode shapes do not become too similar. Increa
«a shifts the roots of the Jacobi polynomials away from the coordinate singulabty-at



302 PAVARINO AND WARBURTON

as demonstrated in Sherwin and Karniadakis [32] and hence the modes are prevented
having the same shape at this vertex.
The form of the basis is:

Vertex modes:
l1-a 1-b
vertex, __
= (52 (2)

¢verte>g — (

1+b
verte>g:
= (05)

Edge modeg2 <m;1<n,m< N;m+n < N):

l+a\/1-a 1-b\™

edge __ 1,1

= (50) () (37)
1 1-b 1+b

o= (150) (457 (12 mison
1-— 1-b 1+b

ﬁdg%=< 2a>( _ )( : )Pnl*ll(b).

Interiormodeg2 <m;1<n,m< N;m+n < N):

i 1+a\/1l-a 1-b\"/1+b i
mt:< 5 )( 5 )P#z(a)(—z ) (—2 )Pﬁmﬁ(b).

We represent this basis graphically fdr= 5 in Fig. 1; the highest mode is quartic.

=
N+ N
)
N——
N
'_\
Ny
o
N———

Mode

Vertex "1’

FIG. 1. Mode shapes for the triangle modal basis wth=5.
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2.4. Polynomial Support

The polynomial bases represented in Sherwin [31] for the hybrid elements have
following support in terms of the polynomial ord®& and the local coordinate systems
of the standard element coordinate systeéms) for the two-dimensional elements and
(r, s, t) for the three-dimensional elements (the bases here are only used to describ
polynomial spaces; the actual bases used in the method have been described in the pr
section). For more general polynomial bases with different degrees in each direction
Karniadakis and Sherwin [17, Section 3.2].

Element Polynomial spadey

Triangle Spafrisl |0<i+j <N}

Quadrilateral ~ Span's! |0<i, j < N}

Tetrahedron Spdn'sitk |0<i+j+k<N}

Pyramid Spafrisit |0<i+ j+k<N}

Prism Spafrisitk |[0<i+k<N,0<j <N}
Hexahedron Spdn'sitk |0<i <N,0<j<N,0<k<N}

2.5. Continuous and Discrete Elliptic Problems

We consider the following model elliptic problem on a bounded Lipschitz regian RY
with boundaryd 2 = I'p U I'y. Dirichlet boundary conditions are imposediog, a closed
subset 0B Q2 with positive measure, and Neumann conditiond’@n

~V2+u=Ff =0 ingQ,

u=up onl'p,

M=g onTly.

More general linear, self adjoint, second order elliptic problems and boundary conditi
could be considered as well. The standard variational formulation of this problem is: F
ueV=H3(Q) ={veHY Q) :v=0 on I'p} such that

a(u,v) = Fv), YveV, 1)

where

a(u,v):/(Vu-Vv+Auv)dx and F(v):/ fodx+ gvds
Q Q

I'n

We assume that the domaihis a union of the spectral elements described previously,

K
Q=]
k=1

where eaclf2y is the affine image of the reference triangle or square in two dimensions :
of the reference tetrahedron, hexahedron, pyramid, or prism in three dimensiong Heet
the finite element mesh defined by the spectral elem@nt3 he spectral element space is
defined as

VN,KZ{vev:v|Qk€ pN,kzl,...,K},
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5 9
Element2 ——» /¢ 4 10 11 \——— Element 2
1 2 3 7 6 5
7 6 5 7 6 5
Element1 —»| 8 4 8 4 | <— Element1
1 2 3 1 2 3
Local Numbering Global Numbering

FIG. 2. lllustration of local and global numbering for a domain containing one quadrilateral and one triangt
element. Here the expansion ordeNs= 3, and we only show the boundary modes.

wherePy is the proper polynomial space on each element; see Section 2.4. The stan
Galerkin formulation of (1) is: Findi € VN-K such that

ank (U, v) = Fyk(v) YoeVNK, 2

whereay k (-, -) and Fy k (-) are obtained frona(-, -) and F(-) by using the numerical
guadrature rules described in Subsection 2.2. The stiffness matrix and load vector of
discrete system are assembled from their elemental contributions o2gdghmeans of
the Z operator, described in detail in Henderson [15], that assembles the local coeffici
into the global coefficients and ensu@$ continuity.

In ordertoillustrate this global assembly procedure, we consider a global domain mad
of two elements as shown in Fig. 2. Only the boundary modes of each element are invol
as the interior modes are completely decoupled. The expansion order shownNeteds
which means there are six boundary modes on the triangle and eight boundary mode
the quadrilateral. The total number of local boundary modes is therbfgyg= 14. Since
three modes meet along the connecting edge the number of global boundary modesis €
and so for this casg is a 14x 11 matrix as shown in Fig. 3.

The superscripts denote the local or global nodal number and the subscripts denot
element number. The absolute column sum gives the multiplicity of a mode and we
that columns 5, 6, and 7 all have a multiplicity of 2. We also note that the absolute r
sum is always 1 since there is only one value of each local mode. The Z matrix gro
together the degrees of freedom for the boundary mode shapes for all the elements
remaining interior degrees of freedom are collected in one group per element. A typ
matrix structure of the resulting discrete system (2) is shown in Fig. 4, wher@'!AZ
and,&i,j =ay,k (¢, ¢}), with ¢; and¢; boundary modes.

We note that the global stiffness matrix is never formed; only the elemental stiffn
matrices are formed and factored. The action of the global stiffness matrix on a vectc
computed by subassembly using the elemental stiffness matrices.

We can take advantage of the bandedness oftheundary—boundary matrix and the
decoupledC matrix by using the well-known substructuring (or static condensation) tec
nigue; see Chap. 4 in Smitt al. [34]. By implicitly eliminating the interior degrees of
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ui 1

ul 1

u% 1 u‘ly

uj 1 uf

ué 1 ug

u} 1 uf

ud 1 uf
w=|u | = 1 ud

u?

u? 1 ud

u} 1 u§

u3 1 udy

ud 1 uf;

u? 1

| u? | i 1 i

FIG. 3. Z-matrix map from global to local degrees of freedom.

freedom, the system can be rewritten as

A—BC'B"T 0][uy] _[f,—BC,
BT Cllu - f| ’

where bold letters denote vectors of coefficients;gontains the unknown global boundary
coefficients, andi; contains the unknown interior coefficients.

Once the boundary coefficienig are known, the interior coefficients are easily found
by solvingK decoupled interior problems. The mat< A — BC 1B is known as the
Schur complement of the original linear system. We determir®y solving iteratively the
Schur complement system

Sup = f, =f, — BC!f, (3)
Boundary d.o.f. Interior d.o.f.

S

4

£ A B

s

&

3

= T

5 B C

2

=

FIG. 4. Form of the global operator matrix. Notice the sparsity of A and the block nature of B and C.
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by a preconditioned conjugate gradient method (PCG). The preconditioner is base
overlapping Schwarz techniques, described in the next section. We remark that the iter
solution of the Schur complement system by PCG does not require one to explicitly fc
S, but requires only the action &on a given vector. This is computed using the definitiot
of Shy solvingK uncoupled Dirichlet problems corresponding to the diagonal blocks
C. Each block can be factored before the iteration so that each Dirichlet solve during
iteration can be accomplished by a simple back-substitution.

It is easy to see that the linear system (3) is the matrix representation of the follow
Galerkin problem (see Chapter 4.6 in Snethal. [34]): Find up € VN-K such that

an.k (Up, v) = Fyk(v) VoeVNK, (4)

whereVN-K is the subspace of the discrete harmonic functiong <. We recall that a
functionv e VN-K is discrete harmonic if

ank(,¢)=0

for every interior modep, € VN'K, i.e., for every mode that vanishes on the interfac
= UkK=1 0Q. In matrix termsy = (w, Vv, ) is discrete harmonic if

BTVb +Cv, =0.

3. OVERLAPPING SCHWARZ PRECONDITIONERS

For simplicity, we present here the basic additive variant of the preconditioner. Mt
general multiplicative or hybrid variants can be considered as well; see 8nait34].

We recall that is the finite element triangulation definedQy= UkK=1 Q. We partition
7k into Kg disjoint groupsD; of adjacent elements, called subdomaifas: UiK;l D;. In
order to have an overlapping partition 9f each subdomail; is extended to a larger
subdomairD;, consisting of all elements ak within a distancel from D;. The minimal
overlap consists of one layer of elements outdije

3.1. Matrix Form of the Preconditioner

Our overlapping additive Schwarz preconditioet for the Schur complement matrix
Sis based on the solution of a coarse problem and on the solutions of local problem
the subdomain®;, defined as follows.

() LetRgbe the restriction matrix returning only the vertex modes of a global vect
¢y of boundary coefficients and I§ be the vertex block of the Schur complem&nThen
Ry S *Ro represents the solution of a coarse problem with discrete harmonic piecev
linear elements on the mesh (i.e., involving only the discrete harmonic extensions o
vertex modes).

(b) Let R be restriction matrices associated with the subdomBjngiven a global
vectorgy, R returns only the local boundary coefficiegisof basis functions with support
in D/. Let § be the local Schur complement associated with the subdoiaiThen
RTS_lR; represents the solution of thth local problem orD; involving only the local
boundary coefficients;, and satisfying zero Dirichlet boundary conditionsaiby \ 9.
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The matrix form of our preconditioner is then:

Ks
$'=R$'R+Y_R'S'R. ©)
i=1
We remark that, in practice, the action®f' can be calculated without explicitly forming
S by solving a problem o] (with zero Dirichlet boundary conditions drDj\a$2 and
right-hand side different from zero only for the local boundary modes associategiyith
see [34, Chap. 4.2.1] for this well-known technique. The same technique can be applie
compute the action oﬁgl without explicitly forming §. We also remark that actions of
both §* and $1 can be approximated by the solution of local and coarse problems w
approximate Schur complements; see [34, Chap. 4].

3.2. Space Decomposition and Convergence Rate Estimates

Schwarz preconditioners can also be described in functional terms by introducir
decomposition of the discrete space of the problem. This is usually done in order to ok
a theoretical analysis of the preconditioner by using the abstract Schwarz framework
[34]). This preconditioner is associated with the following decomposition of the discrt
spaceVN-X defined in the previous section, into a coarse sp4cand local space¥,,
associated with the subdomaibs:

Ks
VNK =Vo+ ) Vi
i=1

(a) The coarse space is defined as
Vo = \71’K;

i.e., it consists of discrete harmonic piecewise linear functions on the mesbomputa-
tionally cheaper choices are possible, such as piecewise linear function on a coarser
associated with the subdomaibBs. The associated coarse stiffness matrix is denoted |
S.

(b) The local space¥; consist of piecewisap polynomials satisfying zero Dirichlet
boundary conditions on the internal subdomain boundaiig§a <2 and the original bound-
ary conditions o D/ N d2. Hence, for an internal subdomai the associated local
space is

Vi = VNK N HED)).

If we define a coarse projectidiy : VN-X — V; andK local projectionsT; : VN-K —
by

aN,K(-riu,v)=aN,K(u,U) VUE\/i9i=O71""7KS’
then it is easy to see that our preconditioned system

Ks
S's=R]§'RS+ > _R'S'RS

i=1
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is exactly the matrix form of the additive Schwarz operator
T =T0+T1—|—-~+TKS.

Pavarino [24] analyzed an overlapping preconditionerdarersion finite elements on
guadrilateral and hexahedral meshes. The method studied in [24] has generous overlap
the subdomains consist of the union of the elements sharing each vertex. If the tech
tools developed in [24] (in particular Section 5, pp. 510-512) are used, it is straightforw
to extend to our preconditioner the same uniform bound on the condition number of
iteration operator in case of quadrilateral meshes in two dimensions and hexahedral me
in three dimensions:

THEOREM1. If 7« is a quadrilateral or a hexahedral megsthen
cond(T) = condStS) < C,

with C constant independent of, IK, and Ks.

The extension of the analysis to triangular or nonhexahedral meshes is still an c
problem. The numerical results reported in the next section indicate that a uniform bo
asin Theorem 1 holds for hybrid meshes as well. Some progress for nonoverlapping dol
decomposition methods and tetrahedral meshes can be found in Bica [3].

An additional open problem is the extension of our method based on generous overlaj
more flexible method based on small overlap techniques. This has been done for hexar
meshes and GLL nodal basis, where a small overlap of a few GLL points outside e
spectral element led to a successful algorithm; see, e.g., Pahl [23], Casarin [4], Fischer
Pavarino [26], and Rgnquist [29].

3.3. Complexity Estimates

We present here some simple complexity estimates of the computational costs of
PCG algorithm with our overlapping Schwarz preconditioner. For simplicity, we only co
sider the serial case. More complete estimates should consider distributed memory pa
architectures and estimate not just operation counts but also memory and interproc:
communication costs. For a study of the parallel complexity of overlapping Schwarz me
ods forh-version finite elements and optimal choices of the coarse problem, we refe
Chan and Shao [6].

The cost of solving the Schur complement sys@m:f} by CG or PCG is given by

#t x Ci,

where # is the number of iterations required a@gl is the cost per iteration (floating point
operation count).

() CostCcg of CG.

(@l) # is proportional to,/cond’S) but we do not have a theoretical estimate o
condS) for our unstructured spectral elements. Rerersion finite elementssond S) =
O(h™1Y), animprovement over the conditioning of the full Laplacian operat@ond L) =
O(h2). Spectral elements are more ill-conditioned tiawmersion finite elements: for
example, for GLL spectral elements on hexahedral meshes wedoaetl ) = O(KN®)
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(see Couzy and Deville [9]). Numerical results by Sheratil. [30] indicate that for our
unstructured spectral elemertnd S) = O(K N) in two dimensions; hence

#it — O(Kl/le/z).

(a2) The cost per iteratio@;; is dominated by the cost of matrix—vector product:

Sv. These products can be computed either by subassembly of the local Schur compler
S for each elemen®; (when theS are formed in a preprocessing stage before the C
iteration) or by the definition, i.e., bl interior solves, one for each eleméntas explained
in Section 2.5. The cosE; of theith interior solve depends on the solver employed. Le
n; be the dimension of thith interior problem ore;; we haven; = O(N?) in 2D and
ni = O(N3) in 3D. If we factor the local interior stiffness matrices before the iteration the
each local solve has the cost of a back substituipe: O(n?). l.e.,C; = O(N*) in 2D and
Ci = O(N®) in 3D. If we use a fast interior solver such as the fast diagonalization methc
(FDM), available for hexahedral elements, then the cost reduc@eNd) in 3D; see Couzy
and Deville [9]. We can also use a spectral version of the multigrid method, the mult
method (see Katz and Hu [19]), or a few steps of an iterative method to further reduce
cost to the optimal valu® (N?3) in 3D. Of course, in this last case the use of inexact interic
solvers might increase the number of CG iterations required.

In conclusion, we hav€; = O(N%), with « > 1 depending on the interior solver em-
ployed, and in 2D

K
CCG = O<K1/2Nl/ZZCI> — O(K3/2N3a+l/2).

i=1

(b) CostCpcg of PCG with overlapping Schwarz preconditioner.
(b1) In this case, from Theorem 1 for hexahedral elements and from the numer
experiments presented in the next section for general unstructured elements,

# = \/cond(51S) = O(1).

(b2) Cj; is now dominated by the cost of matrix—vector produstsaind the cost of
the overlapping precondition&~1v (the restriction and interpolation operations with the
matricesR andRT have lower order complexity as the other vector operations in each
iteration). The cost o§~1v is the sum of the cost of the local solvers on each subdomz
D; and the cost of the coarse solver. As described in Subsection 3.1, each subdomain
requires the solution of a Dirichlet problem @, which hasO(K; N®) unknowns, where
Ki is the number of spectral elements in subdomiajn If we use the same solver we
used for the interior problems, the cost of each subdomain solve isQlikt N*) and
the sum of the subdomain solves has @&}/, K*N3*) = O(N3* S"Ks, K#). The cost
of the coarse solver is proportional to the dimenangrof the coarse space: if we use a
direct solver the cost i©(n3) and if we use an iterative (inexact) solver the cost could &
reduced td(ng). For simplicity, we tookng = K in our implementation that uses all vertex
modes, but a more sophisticated implementation requiring only one degree of freedon
subdomain would yieldhy = Ks. The cost of the coarse solve is th@mng), whereg > 1
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depends on the coarse solver employed. In conclusion, we have

Ks
Cit = cos(Sv) + COS(é_lV) =0 (K N3 4 N3« Z Kioz + ng)

i=1
Ks
- O(N%(K+ZK;¥> +n§>,
i=1

and since #= O(1), we have

Ks
Cpcg = O<N3a<K +ZK|‘1> +ng>

i=1

If the coarse problem is not too largepcg is asymptotically better tha@cg with respect
to N, while it is more difficult to estimate the exponent K¥f Supposing subdomains of
approximately the same size, we hd§je= K /K + Ks, whereK is the number of elements
in the overlapping layer of each subdomain. If we use an optimal solverawiti, then
S K= 015 (K /Ks + Ks) = K 4 KK < constK , because each element belongs t
a fixed maximal number of subdomains. Then, in this case PCG has a better comple
estimate than CG also with respectio We could also use as local solver a fixed numbe
of iterations of a linear iterative method (this will have an optimal cost with 1, but of
course it will be no longer guaranteed that#0(1)). We remark that using an inner CG
iteration as local subdomain solver would lead to worse complexity estimates becaus

cost of the local solver would then @(K¥*N3*+1/2) as estimated in point (a).

4. NUMERICAL EXPERIMENTS

In this section, we report on the results of numerical experiments with the overlapp
Schwarz preconditionefs‘l described in Section 3. The elliptic problem considered i
the one described in Section 2.5 with=1, domainQ2 specified below and right-hand
side, and boundary condition prescribed such that the exact solution(Asx$sin(y).
The spectral element discretization of this problem has been described in Section 2.
results have been obtained using the unstructured spectral element code NekTar [3:
31, 37, 17, 30] (see also http://www.cfm.brown.edu/people/tcew/nektar.html) running
Silicon Graphics workstations. The NekTar code is constructed using an object-orier
programming model implemented in C++ with matrix operations computed using forti
LAPACK/BLAS routines.

The domain has been partitioned into subdomains using the mesh partitioning ¢
PMETIS [18]. The preconditioner is accelerated by the conjugate gradient method, s
the Schur complement is symmetric and positive definite. For these computations the ir
guess is always the null vector and the iteration is stopped when the norm of the relz
residual is less than 1&° (or 1075 in the last test in Table VI). The overlap is kept fixed
to the minimal one-element layer around each subdomain. In all figures, the subdom
are shown without overlap. The coarse and local problems are solved exactly by a d
method, except in the 3D runs of Tables V and VI, where for memory reasons we have (
a diagonally preconditioned conjugate gradient method. Computationally cheaper ine
solvers, such as ILU(k), mulg, or other iterative methods, could be used instead.
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TABLE Il
2D Block Mesh, 128 = 8. 2 Elements, 4 Subdomains

N Iter. Rel. err. Cond. n. Amax Amin
2 18 1.02e-10 5.11 5.00 0.9791
3 19 2.92e-11 5.11 5.00 0.9791
4 19 3.97e-11 511 5.00 0.9791
5 19 9.5%-11 5.11 5.00 0.9792
6 19 9.28e-11 5.11 5.00 0.9792
7 19 3.15e-11 511 5.00 0.9791
8 19 3.20e-11 5.11 5.00 0.9791
9 19 3.08e-11 5.11 5.00 0.9791
10 19 2.96e-11 5.11 5.00 0.9791
11 19 2.93e-11 5.11 5.00 0.9791
12 19 3.37e-11 5.11 5.00 0.9791

We consider the following four test problems.

(1) Q=[-1, 1]?is a square domain in the plane;

(@) t¢ is a structured mesh witk = 128= 8- 2 triangular elementXs =4 sub-
domains, andN varies from 2 to 12; see Table II.

(b) 1« is a structured mesh witK =512=16?- 2 triangular elements =16
subdomains, andll varies from 2 to 12; see Table IlI.

(2) Q is arectangular domain in the plang, is an unstructured mesh with =780
triangular and quadrilateral elemenks,= 4, 8, 16 subdomains, aridl varies from 2 to 12;
see Figs. 5-7 and Table IV.

(3) =[-1,1] x[-1,1] x [0, 2] is a cubic domainzk is a structured mesh with
K =3072= 8%. 6 tetrahedral element& = 8 subdomains, an varies from 2 to 8; see
Fig. 9 and Table V.

(4) Q is the three-dimensional domain shown in Fig. 10, representing a one-elen
thick face masksyk is a mesh withK = 3295 prismatic element& s = 8 subdomains, and
N varies from 2 to 6; see Table VI.

TABLE I
2D Block Mesh, 512 =16- 2 Elements, 16 Subdomains

N Iter. Rel. err. Cond. n. Amax Amin
2 24 1.31e-11 5.11 5.00 0.9786
3 24 1.46e-11 5.11 5.00 0.9790
4 24 1.42e-11 5.11 5.00 0.9791
5 24 1.40e-11 5.11 5.00 0.9791
6 24 1.41e-11 5.11 5.00 0.9791
7 24 1.43e-11 5.11 5.00 0.9791
8 24 1.43e-11 5.11 5.00 0.9791
9 24 1.43e-11 5.11 5.00 0.9791
10 24 1.42e-11 511 5.00 0.9791
11 24 1.3%e-11 5.11 5.00 0.9791
12 24 1.37e-11 5.11 5.00 0.9791
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TABLE IV
qt2 Mesh, 780 Elements

Ks N Iter. Rel. err. Cond. n. Amax Amin
4 2 16 1.05e-9 3.02 3.00 0.9930
3 16 2.20e-9 3.00 3.00 0.9993
4 16 2.04e-9 3.01 3.00 0.9968
5 16 2.09e-9 3.01 3.00 0.9969
6 16 2.13e-9 3.01 3.00 0.9969
7 16 2.15e-9 3.01 3.00 0.9969
8 16 2.16e-9 3.01 3.00 0.9969
9 16 2.17e-9 3.01 3.00 0.9969
10 16 2.18e-9 3.01 3.00 0.9969
11 16 2.18e-9 3.01 3.00 0.9969
12 16 2.18e-9 3.01 3.00 0.9969
8 2 21 2.87e-9 4.49 4.46 0.9924
3 22 1.01e-9 451 4.47 0.9924
4 22 1.02e-9 451 4.47 0.9922
5 22 1.05e-9 451 4.47 0.9932
6 22 1.06e-9 4.50 4.47 0.9937
7 22 1.07e-9 4.50 4.47 0.9940
8 22 1.07e-9 4.50 4.47 0.9942
9 22 1.07e-9 4.50 4.47 0.9943
10 22 1.08e-9 4.50 4.47 0.9944
11 22 1.08e-9 4.50 4.47 0.9945
12 22 1.08e-9 4.50 4.47 0.9945
16 2 23 2.37e-9 5.05 5.00 0.9901
3 23 2.56e-9 5.04 5.00 0.9924
4 23 2.52e-9 5.04 5.00 0.9918
5 23 2.47e-9 5.04 5.00 0.9918
6 24 9.83e-10 4.98 4.93 0.9902
7 24 1.03e-9 4.92 4.87 0.9902
8 23 1.79e-9 4.59 4.55 0.9914
9 23 1.78e-9 4.59 455 0.9914
10 23 1.78e-9 4.59 4.55 0.9914
11 23 1.78e-9 4.59 4.55 0.9914
12 23 1.77e-9 4.59 4.55 0.9914
TABLE V
3D Block Mesh, 3072 = 8. 6 Elements, 8 Subdomains
N Iter. Rel. err. Cond. n. Amax Amin
2 29 1.38e-11 5.74 5.38 0.9380
3 29 1.15e-11 5.75 5.41 0.9418
4 29 1.62e-11 5.75 5.42 0.9430
5 29 1.63e-11 5.75 5.42 0.9430
6 29 1.20e-11 5.75 5.42 0.9430
7 29 1.67e-11 5.75 5.42 0.9428
8 29 1.36e-11 5.76 5.42 0.9415
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TABLE VI

Head Mesh, 3295 Elements, 8 Subdomains

313

FIG. 7. qt2 mesh, 16 subdomains.

N Iter. Rel. err. Cond. n. Amax Amin
2 17 4.47e-15 3.08 3.00 0.9756
3 18 3.78e-15 3.08 3.00 0.9756
4 19 3.28e-15 3.08 3.00 0.9750
5 20 1.81e-15 3.08 3.00 0.9753
6 20 3.30e-15 3.08 3.00 0.9756
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FIG. 10. Head mesh, 8 subdomains.

In all tables, we report the number of conjugate gradient iterations, the relative error v
the direct solution, the Lanczos approximation of the condition number, and the extre
eigenvalues of the preconditioned operaéo?‘s.

Itis clear from the results of the tables that the iteration counts and spectral propertie
the proposed method are independent of the spectral dBgréee results with the hybrid
mesh reported in Table IV also show that the iteration counts are bounded independe
the number of subdomains; (this is less evident in Tables 11, 111). This bound seemsto b
the same for both hybrid (Table IV) and block meshes (Tables 11, 1l1). In Fig. 8, we ha
plotted the PCG convergence history for the runs white= 10 andKs=4, 8, and 16 in
Table IV. These three runs with the overlapping Schwarz preconditioner are contrasted
the diagonal preconditioner. For the three-dimensional tests, we could only run cases
smaller values oN, but the results point to the same conclusions: as is the case for stan
h-version finite elements, the overlapping Schwarz method proposed is clearly a par
and scalable solver also for unstructured spectral element discretizations. An efficient
competitive implementation on parallel architectures was beyond the scope of this p
and will require a study of efficient approximate solvers for the local and coarse proble
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